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Motivation

Forecasts of wave and current conditions used in mission
planning, AUV & UUV guidance, Mine Warfare

— Under-estimate: Lives and equipment endangered
— Over-estimate: Loss of time and money
USN is investing in number of different types of sensors
— Use data for more than model verification?
— Need guidance in deployment: How many & where?




The Problem

Errors in wave condition at boundary cause errors in wave heights (H) closer to
shore

Currents in the near-shore are driven by gradients in wave stress (proportional
to H?) => very sensitive to the wave conditions
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Model equation (SWAN):
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Underlying assumptions for adjoint model:

Fetch limited sea state

Wave Data Assimilation: Walker (2001)

N : Wave action (E/0)
Cy,Cy,CyCo - Propagation speed
Siot : Source/Sink terms

Sgs,p - Bottom friction (sink)

Sgs,w - White capping (sink)

Sgs,pr: Depth-limited breaking (sink)
Si, : Wind input (source)

S, : Non-linear interactions

Model itself is perfect (i.e. all errors propagate in from the boundary)

Errors at the offshore boundary are uniformly distributed along the boundary

Data used to correct the boundary conditions are from observations outside the surf zone
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Assimilation methodology

Objective function:
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M : Number of observation locations

E(x,s) : Energy spectrum

A(x,s) : Lagrange multiplier - adjoint wave action spectrum
E, : Boundary spectrum

Penalty on the control variable (second integral) ensures unique solution (Bennet
and Miller, 1991)

Veeramony, J, D. Walker and L. Hsu, (2010), “A variational data assimilation system for nearshore
applications of SWAN”, Ocean Modeling, 35, 206-214.

Walker, D., (2006): “Assimilation of SAR imagery in a nearshore spectral wave model.”, Tech Report
200236, GDAIS.
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Cost function (diagnostic): 7 L | [ Flx o) Fols st /
= s § i»S) — L S+

used to determine convergence
Forward model

: : o g
(Stationary SWAN): V. (CN) = ;g;
Adjoint SWAN model: 0y M
C' VA= _Ti (E—Eé)ﬁ(X—Xi)

i=1
A = adjoint spectrum at the boundary

Gradient of J (used to iteratively
determine corrected boundary 5. A

spectrum which minimizes J): B = = C- -7 dé+20E,
b JoR O
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Equipment:

Over the Beach Operations

e Raven B UAS

00601

¢ Real Time Kinematic “Rover” GPS
Santa Rosa Island, FL

Over Ocean Operations

Sea Fox

e  PSI ADCP / Wave Buoy
19 October 2010
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= Drifting Buoys
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Experimental Setup

Wave spectra
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Incident wave spectrum based on Pierson-Moskowitz spectrum

*Quadruplet interaction and dissipation due to white capping enabled in forward model
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Difference between actual and modeled

= significant wave height (twin-experiments)
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Difference between actual and modeled
mean wave period

(a)
5
- 5
s3 3
> 1 1|
0 &
0 2 4 6 8

LB
",

(d)

(c)
5 5
. 5 5
gs 3
= =
0 0
0 2 4 6 8

1
0 2 4 6 8

(f)

R SREE - T
X (km)

Shown as a percentage of the actual wave period for all six cases
19 October 2010 MREA10 Workshop 12

(e)
5 5
_ 5 _E
§ 3 3
| 1 i
0 EEEEE— 0
G- 2 4:¢c: 8
(km)




Difference between actual and modeled
mean wave direction
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Comparison of assimilated solution
versus observation
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Observed versus predicted wave spectral
energy density
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Observed versus predicted wave spectral
energy density
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Instru;'nents .

Pressure

Pressure & Velocity

Pressure & Velocity Profiler
Thermistor String

Radar

Directional Wave Buoy

Video

Velocity & Conductivity Tower

Nearshore Canyon

EXperiment
2003 September-December

Focus: “...how abrupt coastal
bathymetry affects
*\Wave propagation
Circulation
*Swash
Morphological evolution’

)

http://science.whoi.edu/users/elgar/NCEX/ncex.html

"Wave and current data were collected by T.H.C. Herbers
(Naval Postgraduate School), W.C. O'Reilly (Scripps Institution
of Oceanography), and S. J. Lentz (Woods Hole OCeanographic
Institution) with funding from the National Science
Foundation (Physical Oceanography) and the Office of Naval
Research (Coastal Geosciences)."
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Model Details: NCEX
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e 288 grid points in x-direction; 39 meter resolution
e 271 grid points in y-direction; 46 meter resolution
e Use station 35 for assimilation

19 October 2010 MREA10 Workshop




N W

Comparison of Hg, (m)
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Blue circles are data, green dots are model results
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Comparison of f, (Hz)
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Comparison of 6 . (deg)
North is 0°, West is -90°
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Duck, NC Studies

Assimilation minimizes errors in the offshore boundary condition
and bottom friction

Water depth (m) S(f,0) (input) Spectra at CHLV2
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- Assimilation data location: 8m array
- Energy concentrated around one dominant frequency

« Wave mean direction near-normal to offshore boundary (westward
propagation) 5



Limitations of Walker’s Model
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Spectra at CHLV2

SWAN: HS:O.33 m; fp:0.0BQS Hz
DATA: Hs=0.48 m; fp=0.1 Hz

10°
5 | | =
E3 el Model | =
E0 3 E
2 ] 2z
‘D ‘@
5 g
(=] a3 a
§10° T
® t 3
j=R o
w w
3
- ‘ o
10° 10" 10°

FeOYREAND Workshop

10+

10°L

10"
Frequency (Hz)

Spectra at DSLN7

SWAN: HS:DA39 m; fp:0.2555 Hz
DATA: Hs=0.83 m; fp=0.19 Hz

5000

10"
Frequency (Hz) 23



Summary & Conclusions

e Wave data assimilation system developed by Walker (2006) has been
shown to correct boundary conditions to improve wave energy prediction
within computational domain.

e Assumption that propagation dominates and source terms are neglected
in the adjoint model.

* Results demonstrate that assimilation system can reproduce most wave
energy in the domain even when winds and associated nonlinearities are
significant.

e Accuracy of assimilation system is reduced when there is relatively little
energy at the assimilation location.

 The transfer of energy between frequencies as the waves propagate is not
captured by the model; consequently the spectral shapes from the model
are broader than the measurements.
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Future Plans

e Development of new wave adjoint (FY10-12):

— Include lateral boundaries (offshore boundary
conditions not limited to offshore uniform)

— Include all source/sink terms
— Develop cost function to be minimized
* |nvestigate assimilation of currents into
nearshore modeling systems
— Investigate use of OPENDA and NCODA

— Planned trials with SHARC Wave Glider in 2011
e Possible use of ADCP currents for hydrodynamic nowcast
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In Memoriam
Y Larry Hsu (April 6,1947 - July 30, 2010)

Larry was recognized as a leading researcher in the field of surf forecasting. Implemented
several physics-based improvements to the Navy Standard Surf Model (NSSM), including
roller option, which he transitioned to the Naval Oceanographic Office. Larry performed
numerous validation studies with Delft3D. Validation studies showed that Delft3D was
robust and accurate in predicting nearshore wave height and flows in a depth-averaged
environment. He also worked with industry in the development of an Iridium-based

directional wave buoy with an Acoustic Doppler Current Profiler.
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