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MenuMenu

• AUVs for environmental sampling
─ glidersgliders
─ propelled 
─ hybrid
d i li d• Adaptive sampling and autonomy
─ data-driven vs. model-driven

• Networking and cooperationNetworking and cooperation
• Limitations to uw robot team cooperation

─ communication
─ localization

• Adaptive sampling in a communication 
constrained environmentconstrained environment



AUVs for environmental samplingAUVs for environmental samplingAUVs for environmental samplingAUVs for environmental sampling

• Traditional measurements in a cost-effective way:Traditional measurements in a cost effective way:
─ replace ship and/or buoys with autonomous vehicles
─ pre-program the mission, receive data at a remote station
─ CTDs, water quality, bathymetry, seabed morphology
─ data quality enhanced by the use of an underwater platform

• New measurements possibilities
─ gradient-following, feature mapping, synoptic measurements
─ exploit the on-board intelligence as data are gathered: 

adaptivity
─ exploit the availability of multiple vehicles: p y p

team cooperation



Some AUVs …Some AUVs …
O hi lidOceanographic gliders

very long endurance 
inexpensive

hi li
”Hybrid” vehicles

some enduranceoceanographic sampling
pre-programmed mission
cooperation (Leonard et al.)

P ll d AUV

some endurance 
inexpensive
oceanographic sampling
pre-programmed missionPropelled AUVs

deep water 
long endurance 

pre programmed mission
cooperation

g
very expensive
seabed mapping 
pre-programmed mission

shallow water
some endurance 
moderately expensive
oceanography, seabed mapping
pre-programmed, cooperation



… and some ASV -… and some ASV -
Autonomous Surface Vehicles Autonomous Surface Vehicles 

OASIS (NOAA) - Delfim (IST)
Scout (MIT) - Charlie (CNR-

ISSIA)



Adaptation and autonomy Adaptation and autonomy p yp y

• Sample at points/ paths that maximize some figure of p p p g
merit related to our knowledge of the sampled field 

• In the oceanographic context adaptation can be: 
Model driven: 

use model prediction to determine next missionuse  model prediction to determine next mission 
no autonomous planning needed (but autonomous navigation 

required)
open loop - feedback

Data driven:
use data to determine next way-point
autonomous planning as well as autonomous navigationu o o ous p g s we s u o o ous v g o
feedback only



Where/when is data driven 
adaptation needed?

Where/when is data driven 
adaptation needed?adaptation needed?adaptation needed?

• Whenever occurrence of anomalous 
t h t b it d d t t devents has to be monitored, detected, 

classified
• E g : gas&oil fieldsE.g.: gas&oil fields

− Fixed sensors in key positions 
− Periodic sampling around the field

• Other instances:
− water quality in touristic 

coastal areascoastal areas
− industry discharge 
− security: intrusion detection, 

mine/ordeal searchmine/ordeal search



Some formal frameworksSome formal frameworks
for data-driven adaptive samplingfor data-driven adaptive sampling

• A clear qualitative concept• A clear qualitative concept 
− increase sample density when the measured quantity is rapidly 
varying (either in time and/or in space)
− estimate variation rate from past or neighborhood data

• Sampling metricSampling metric 
− deterministic setting: smoothness
− probabilistic setting: information gain

li i d d i hi− application-dependent weighing
− use tools from both approaches



Deterministic setting: smoothnessDeterministic setting: smoothness

• A measure of the variability of the field
– weighed sum of the  time and spatial derivatives
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• Adapt the sampling step to the local smoothness
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• Adapt the sampling step to the local smoothness
• Estimate local smoothness from available data



Probabilistic setting: information gainProbabilistic setting: information gain

• Minimize the expected uncertainty of the field
– A priori mean and covariance of the field
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– m measurements at points (ri ;ti), estimation algorithm
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– choose the m samples so to minimize the a posteriori 
t i t f th ti t d fi ld
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Adaptive sampling as a feedback processAdaptive sampling as a feedback processAdaptive sampling as a feedback processAdaptive sampling as a feedback process
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Model-driven predictor/corrector methodsModel-driven predictor/corrector methods

Sensor sampling Kalman-like 

Process Model
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Cooperation and coordination
( adapted from Whitcomb and Yuh, 09)

Cooperation and coordination
( adapted from Whitcomb and Yuh, 09)( p , )( p , )

• Team of heterogeneous vehicles

• Payoff
─ adaptationp
─ same/better performance
─ no single point weakness
─ optimized coverageoptimized coverage
─ sensor networks
─ ubiquitous computing

bil─ mobile agents, consensus, ...

• Drawback: cooperation and coordination require inter-p q
vehicle communications



The acoustic communication channelThe acoustic communication channel

• Transmission loss 
─ affects SNRaffects SNR
─ limitations on channel capacity / requirements on source 
level

l i h• Multi-path structure
─ causes symbolic interference
─ limitations on coding/decoding schemeslimitations on coding/decoding schemes

• Acoustic channel predictions used to determine 
relative depths and maximum range among Tx/Rx to 
guarantee a given SNR



Predicting channel characteristics 
from a communication stand point
Predicting channel characteristics 
from a communication stand pointfrom a communication stand-pointfrom a communication stand-point

Acoustic Propagation equations: BellHopAcoustic Propagation equations:

SNR(x,w) = SL - TL(x,w) - N(w)

BellHop
Numerical Code

‣ Simulates complex scenarios

Equations for channel characterization

‣ Simulates complex scenarios

‣ environmental conditions

‣ Includes ( in TL): 

geometrical spreading

[Capacity]

[Bandwidth]

‣ geometrical spreading

‣ intrinsic attenuation

‣ wave interference patterns 

Simplifications:[Capacity]

[TX Power]

‣ Simplifications:

‣ range independent

‣ stationary sources

(Stojanovic, 07) (Caiti et al., 09)



Limitations & opportunities for Limitations & opportunities for 
cooperative robotscooperative robots

• Network connectivity constraints limit the 
relative mobility of the agentsy g

• Mobility of the agents can be exploited to 
d ll f f f hdynamically maximize some figure of merit of the 
communication channel



What happens with COTS 
acoustic modems

What happens with COTS 
acoustic modemsacoustic modemsacoustic modems

• COTS acoustic modems have fixed bit rate and source 
level, with BER depending on the SNR

• Bit rate: from 256 b/s to optimistic 15 kb/s

• Underwater cooperation has to rely on the autonomy• Underwater cooperation has to rely on the autonomy 
of the individual agents and on parsimonious comms 
overheadoverhead



Team localizationTeam localization
• A team of AUVs must be cheap!
• Underwater navigation is a major source of vehicle cost

− inertial systems
• Use the acoustic modems also to localize acoustically 
the vehicles among the team with range-onlythe vehicles among the team with range-only 
measurements
• Some vehicles at the surface, geo-referenced; relative , g ;
localization

DGPS



Cooperative uw localization 
by range-only measurements
Cooperative uw localization 
by range-only measurementsby range-only measurementsby range-only measurements

• A hot research topics
− J. Leonard; Sukhatme; Chitre; Antonelli ...

• Alternate between ranging and communication
• COTS modems available (WHOI Evologics )• COTS modems available (WHOI, Evologics, ...)
• Use depth sensors to convert from 3D to 2D
• Several issues:

− linear vs. nonlinear estimate
− observability depending on relative vehicle motion
− compensate for transmission delayscompensate for transmission delays
− on-board correction for bended ray-paths
− clock synchronization

• Our approach: distributed EKF with delay (from team 
theory work dating back to the ’80s!)



Designing behaviours 
to improve observability

Designing behaviours 
to improve observabilityto improve observabilityto improve observability

Not observable Observable EKF Error

(Antonelli, Caiti et al., ICRA 10)



Real-time Ray-tracing (RT2)Real-time Ray-tracing (RT2)

• Compensate ray bending through a look-up table
B di i i i t ith• Bending ray error: increasing importance with range

• In distributed localization range errors will accumulate
• Requires measurement of sound-speed vs depthRequires measurement of sound-speed vs. depth

PTT: 
Partial 
Travelled 
TimesTimes

PTD: 
Partial TravelledPartial Travelled 
Distances



Look-up table and on-line estimateLook-up table and on-line estimate

receiver depth
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Cooperative adaptive sampling with 
communication constraints

Cooperative adaptive sampling with 
communication constraintscommunication constraintscommunication constraints

- Each vehicle 

f it

- Each vehicle 

f itperforms its own 

vertical sampling 

performs its own 

vertical sampling 

- All the vehicles 

share information 

- All the vehicles 

share information 

(acoustic)(acoustic)
plan the next move of the team in order to optimize:plan the next move of the team in order to optimize:

- sampling map quality  (map res. below a given threshold)
- overall area coverage measurements (cover the area by sampling

where needed)

- sampling map quality  (map res. below a given threshold)
- overall area coverage measurements (cover the area by sampling

where needed)
- while maintaining connectivity

⇒ range constraint among the vehicles, varying in space and time
- while maintaining connectivity

⇒ range constraint among the vehicles, varying in space and time



Sampling map quality:Sampling map quality:Sampling map quality: 
deterministic data-driven approach

Sampling map quality: 
deterministic data-driven approach

E h hi l i d i ibl f iE h hi l i d i ibl f iEach vehicle computes its next admissible range for its next 

measurement (admissible exploring radius) on the basis of the 

Each vehicle computes its next admissible range for its next 

measurement (admissible exploring radius) on the basis of the 

local smoothness of the environmental map - Local computationslocal smoothness of the environmental map - Local computations
( )ˆ ( ; ) ( ; )k
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h: fill distance 
G: known function



Optimize area coverage Optimize area coverage 

Local decision, rule based: maximize distance from previous Local decision, rule based: maximize distance from previous , f p

samples and from next location of the other vehicles

All vehicles apply the same rule to their available information set

, f p

samples and from next location of the other vehicles

All vehicles apply the same rule to their available information setAll vehicles apply the same rule to their available information set 

Information exchange needed

All vehicles apply the same rule to their available information set 

Information exchange needed



Communication/range constraint Communication/range constraint 

Next sampling points must preserve connectivity of the 

communication structure 

Next sampling points must preserve connectivity of the 

communication structure 



Serial graph structure, fixed topology Serial graph structure, fixed topology 
Use of

Dynamic )pp(C 1jj +,
Transition Cost

y
Programming

)pp(C 1jj +,

jρ

Possible local moves Next
graph

S li i l ⎪⎧

)pp(C 1jj +,

Sampling circles
(independently locally evaluated)

⎪⎩

⎪
⎨
⎧

Backward phase Forward phasep

Distributed implementation of dynamic programming!



Articulated chain structure,
adaptive topology

Articulated chain structure,
adaptive topologyadaptive  topology adaptive  topology 

Minimum 
spanning treespanning tree 

algorithm

current graph next graph

Compare with 
d.p. solutionComms intensiveComms intensive



Dynamic programming on test data Dynamic programming on test data 
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Graph theory based cooperation Graph theory based cooperation 

• Sound optimality proof 
Di t ib t d i l t ti f t li d l ith• Distributed implementation of centralized algorithms

• Heavy comms overload
• Curse of dimensionality as the number of vehiclesCurse of dimensionality as the number of vehicles 
increase

• Possibility of a truly local rule-based algorithm? 
• Yes – behaviours
• Different approaches and implementations – no 
systematic design rule in general, some cases analyzed 
• Small comms load• Small comms load
• Not always optimality guaranteed



An example of cooperative algorithm An example of cooperative algorithm 
in security application in security application 

• Goals
─ Critical asset protection
─ Maintaining acoustic connectivity among the team

• Each agent/node
─Builds a local map of channel characteristics and comms 
performance
─Updates the map when new environmental measurements 
become availablebecome available
─Adapts its behaviour to tackle changes in the environment

R l b d b h i d t ti l fi ld• Rule-based behaviour and potential fields
(Caiti et al., 2009/10)



Rules of the gameRules of the gameRules of the game  Rules of the game  

• AUVs equipped with:q pp
─ Acoustic modem– max range: RC

─ Detection sonar – max range: RD

─ Sensor to measure the environment (CTD)─ Sensor to measure the environment (CTD)

cover with the sonars
h2min

ix a ii x x⎧ −
⎪ ∑

the greatest area
around the asset to
protect

2
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• Find a solution with distributed decisions using only 
closest neighborhood information



Rule-based behaviourRule-based behaviourRule based behaviourRule based behaviour

• Rule 1: Move toward the asset

• Rule 2: Move away from your closest neighbor

• Implemented through gradients of artificial potential 
functions (interest functions hA hC)functions (interest functions - hA, hC)

• Vehicle course: vector sum of the two contributionsVehicle course: vector sum of the two contributions



Interest functionsInterest functionsInterest functions Interest functions 

Ineherently robust to communication loss & 
f lequipment failure!

Can include sonar/modem directionality



Simulation results: 3 vehiclesSimulation results: 3 vehiclesSimulation results: 3 vehicles Simulation results: 3 vehicles 



Some formal propertiesSome formal propertiesSome formal properties Some formal properties 

• With omnidirectional sonar/modems, infinite solution ,
exists (all symmetric configurations around the asset)

• The rule-based algorithm stabilizes around one solution

• Analitycally once on a solution the vehicles either stay• Analitycally, once on a solution the vehicles either stay 
where they are, or move keeping the symmetry around 
the asset (and spanning the whole set of solutions)the asset (and spanning the whole set of solutions)

• We have never seen the symmetric motion in 
simulations; in practice it can be ruled out (note: the 
symmetric motion may be a plus, not a minus!)



Some more comments Some more comments 

• Small comms overhead
─ Each vehicle communicates with its closest neighbor
─ Data to be TX:

Agent Position
Maximum Detection Sonar Range

• Built in Emergency Procedure
─ If an agent loses comms goes to the assetg g

• Distributed, scalable algorithm, independent from AUV # 

• Comms delay do not alter result, but imply longer vehicle 
paths and slower convergencepaths and slower convergence



Experimental test Experimental test 
b i l d6-30 September 10, Pianosa Island

Networked communication
Cooperative localization
S i b h iSecurity behaviour
2 vehicles



Conclusions Conclusions 

• A set of tools for autonomous cooperative adaptive 
sampling with a team of AUVsampling with a team of AUV

─ context: data-driven adaptation
─ deterministic and probabilistic metrics
─ acoustic communication prediction
─ cooperative distributed localization

• Adaptation with communication constraintsAdaptation with communication constraints
─ graph-theoretic approach

─ guaranteed optimality
l fl ibl i ti i t i─ less flexible, communication intensive

─ behaviour-based
─ robust

li ht─ light comms
─ optimality and convergence not guaranteed but for special cases


