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Objectives Coupled Ensemble Prediction

Coupling: The ocean and atmosphere are coupled in nature. The
coupling constrains the range of possible states.

Ensembles: To take into account major sources of uncertainty in non-

deterministic dynamics, system forcing, and initial state, in order to
provide estimates of environment forecast uncertainty

System Components

Atmospheric Model:  Coupled Ocean Atmosphere Mesoscale
Prediction System (COAMPS)
Ocean Model: Navy Coastal Ocean Model (NCOM)

Atm Data Assimilation: Navy Atmospheric Variational Data
Assimilation System (NAVDAS-3DVAR)

Ocn Data Assimilation: Navy Coupled Ocean Data Assimilation
(NCODA-3DVAR)

Coupling: Earth System Modeling Framework (ESMF)



Raw Obs

Data Flow through NCODA System

SST:

NOAA (GAC, LAC),
METOP (GAC, LAC),
GOES, MSG, AATSR,
AMSR-E, Ship/Buoy
Profile Temp/Salt:
XBT, CTD, Argo Float,
Fixed/Drifting Buoy
Altimeter SSH:
Jason-1,2; ENVISAT
Sea Ice:

SSM/I, SSMIS

Ocean Gliders:
T/S profiles
Velocity:

HF Radar, ADCP, Argo
Trajectories, Surface
Drifters, Gliders
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Prediction Errors

Navy Coupled Ocean Data
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Coupled Ensemble Prediction

Development of the Two-Way Coupled Ensemble System
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Coupled Ensemble Prediction

The Ensemble Transform (ET) Ensemble Generation
(Bishop and Toth 1999, Bishop et al., 2009)

analysis — forecast transformation - analysis error
perturbations perturbations X matrix constrained by T varianc:fs (Pa)
Sa= T Bl
(a,(1) ay(1) ... a, (1)) (f,(1) f,(1) ... f (1)) (62 0 ...0 )
a,(2) a,(2) ... a,(2) ,2) 1,2 ... f.(2) 0 o2 ..
Xa: a,(3) a,(3) ... a,(3) Xf =| ,(3) ,(3) ... f.(3) Pa: 0O 0 ..O0
L) a,(n) ... ay(n)) L) f0) ... () ) 0 0  ..o2 )

n= number of parameters m=number of ensemble members
Atmosphere variables are u, v, T, g and ocean variables areu, v, T, S

» With a large ensemble, only one Transformation matrix (T) that includes both
atmospheric and oceanic variables could be used.

» With a smaller ensemble (<100), two distinct T's that include all state variables
(one for atmosphere and one for ocean) is used.

 Accurate knowledge of analysis error variances (P,) in both fluids is critical.
T derived from the atmospheric estimate of P, is mcapable of directly controlllng
the magnitude of oceanic perturbations (and vice versa).
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NCODA Background Error Variances (P;)

Hanna: 2008090112-2008090700

200-m depth

0 5 10 15 20 &5 30

Velocity Errors (cm/s)

Adaptive, evolve with time
Two Components:

1. Model variability — time history of forecast
differences at update cycle interval.

2. Model data errors — time history of
analyzed increment fields.

Time scales used to form these 10-day time-
mean estimates computed from ratio of
spatially varying correlation length scales
and velocity fields

- model variability dominates error variances
in high-flow regimes

- model data error dominates error variances
in low-flow regimes

P =P, —P.H'[HP,H" + R]"HP,



Coupled Ensemble Prediction

Atmosphere/Ocean ET Example of analysis perturbations:
Two-Way Coupled
COAMPS forecast V- curent (ms)
Initial Atmospheric ET u,v,T,q
ensemble Ocean ET: T,S,u,v
conditions
o A
."‘AtmOSphere/Ocean ® Atmosphere/Ocean Inter.pOIated <
‘0 analysis : analysis error moving nest |
perturbations : variance region fOf ?“

Analysis

atmospheric ET

COAMPS atmospheric/
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Coupled Ensemble system features: separate atmospheric and oceanic ETSs;
atmospheric moving nest ET capability




Coupled Ensemble Prediction:
Coupled Experiments

. . op Tropical  Category  Category Category Category  Category
» Moving nest tropical cyclone cases rasion Som 1 3 4

1 2 3
3 | 7485 | G610
mph mph

« Using NOGAPS T119 banded ET as
cold start and lateral boundary conditions

» September 2008
:> * Hanna (O8L: 1-7 September)
o lke (09L: 5-12 September)
» September-October 2009
* Rick (20E: 15-21 October)

e Choi-wan (15W: 12-20 September)
o Lupit (22W: 14-25 October)

« ABCANZ case study
» America, Britain, Canada, Australia, New Zealand experiment
» 23 Feb — 5 Mar 2009 field program at Bay of Plenty, NZ
» Focus on EM/radar propagation

 Piracy case study
» Central America v ¢
» Focus on Risk Management tools/applications =

COAMPS 27-km
&= operational Cent-Am
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Coupled Ensemble Prediction

IKE: Cold Start at 2008090500; 29 members
Atmosphere: 81-, 27-km Ocean: 27-km
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Coupled Ensemble Prediction

IKE: Cold Start at 2008090500; 29 members
Atmosphere: 81-, 27-km

Ocean: 27-km |~ A /,,

Nest 2: TC forecast track from 2008091100
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Coupled Ensemble Prediction
Air-Ocean Variability (Ike: 2008090500-2008091300)

Sea Surface Temperature Difference (°C) Ensemble spread
2008091300 - 2008090500 24-h forecast valid 2008091112
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Qualitatively, SST
differences are similar.
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Current DA approach for coupled model
Coupled model forecast

1st guess/prior for atmosphere

—
coupled forecast /
for atmosphere

\_/ 3DVAR atmospher:c\truth

atmospheric state estimate. Only
observations uses atmospheric data.

1t guess/prior
coupled forecast ©
for ocean

ocean
observations




Coupled DA approach, atmosphere and ocean are
treated as a single coherent system

atmospheric+oceanic
observations

1 \ >|\/|(x1)

y M (o) /

eak constraint ensemble 4DVAR state estimate

M(x,)
| | >

t, t, G
—_

Data assimilation window

Ocean observations correct atmospheric states and atmospheric
observations correct ocean states.




Coupled DA Application: Tropical Cyclone

Katrina, SST (K) at 2005082712, forecast hour: 00

Definition Coupled DA:
- observation in one fluid

30

creates an innovation in 28
the other fluid
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Longitude

* COAMPS (45, 15, 5 km moving)
* NCOM (5, 1.67 km)

* Initialized 12Z Aug. 27, 2005

* 48 h Forecast

TC wind stress causes upwelling, upwelling cools ocean surface, cool
ocean surface moderates TC intensity.



Coupled DA Challenges

Coupled model ensemble provides plausible forecast states
constrained by coupled dynamics

Coupled DA via classical adjoint/TLM approach costly to develop
and maintain

Ensemble covariances from coupled model ensemble enable
coupled DA

e |ssue of spurious sample covariances associated with small
ensemble size

Challenges:

e find the most effective method of attenuating spurious
correlations

e implement adaptive covariance localization functions to
enable 4D ensemble based DA
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Decoupled 3DVAR Systems

Separate analyses for ocean and
atmosphere

Atmospheric data do not improve
ocean. Ocean data do not
improve atmosphere.

Difficult to produce balanced
coupled model initial states.

Does not use ensemble
covariances in either fluid.

No 4D covariance so use of data
separated in time fundamentally
incorrect.

Coupled 4D System

Single analysis: bottom of the
ocean to top of the atmosphere

Atmospheric data improve ocean
- ocean data improve
atmosphere.

Enables the production of highly
balanced coupled initial states.

Uses ensemble covariances in
and between fluids.

Flow adaptive ensemble
localization gives 4D
covariances. Handles data
correctly across assimilation

time window.

Decoupled DA versus Coupled DA
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Adaptive Ensemble Covariance Localization

— Stable flow error correlations

0-35 100 150 200

" Unstable flow error correlations |
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Ensembles give flow dependent, but noisy correlations
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Adaptive Ensemble Covariance Localization

Current ensemble DA techniques
reduce noise by multiplying ensemble
correlation functions by a fixed
localization function (green line).

Resulting correlations (blue line) are too
thin when true correlation is broad and

Fixe
0.5}

d localization

[ Stable flow error correlations

030

100
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1

| Unstable flow error correlations |

Fixed localization

05!
. o \\v,._
030 100 150 200
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Adaptive Ensemble Covariance Localization

Modulation functions based on
smoothed ensemble correlations
provide scale adaptive and
propagating localization
functions.

These moving localization
functions enable ensemble
based 4D DA.

Localization adapts to width and

propagation of true error
correlations

Bishop and Hodyss (2007)

— Stable flow error correlations —

200

039 100 150
- Unstable flow error correlations -
1 I q = b
t=0 t=1i
0.5|
O—A——as%—"i-v - “‘LEL%
035 100 150

200
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Modulated Ensembles and Localization

Bishop and Hodyss (2009a, 2009b) Tellus
Consider covariance of mth and nth elements of ( 2,020 ES) given by
K K K K K
ZZZ(kaijZmE)( nkznj m) (szkznk)(zzri?j‘z;j](zzriz m] :(I_)f{f O(_:S O(_:S )mn
: =

K
J T s s _sT
where P, EZ;(Z,@- and C = ng—; Hence,
k=1

J

iii(ﬂ@f@z )(Z OZ OZ ) :ZDggzl_)KfQCs oOC

Modulated ensemble member
Thus, the covariance of the modulated ensemble 1s the localized ensemble covariance.

For K =128, the modulated ensemble contains over 2 million members. Up to

K* (K +1)/2=1,056,768 of these are likely to be linearly independent.
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Modulated ensembles enable global 4ADVAR

Given : Pf — ZDZ[T) where Z, is the large, modulated ensemble

Step 1 is to solve for v:

(IR HZ,J[R™HZ, T + 1] =R ™[y = H(x,)]

Step 2 is the post-multiply :

X, —X, =Z,[R™Y*HZ ] v

a

 Incremental and non-incremental 4DVAR are possible

» Hybrid mixes of ensemble-based TLMs and static covariances are possible
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Application to global NWP model
Example of a column of the localization C. © C, with K =128
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0.1 100
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Application to global NWP model
Example of a column of the localization C. © C, with K =128

1872

Ensemble based localization moves ~500 km in 6 hrs




4D Localized Ensemble Covariance

Example of a column of P/ ©C, ©C, with K =128

<vv> Increment 06Z

10

15

20

25

30

90 120
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4D Localized Ensemble Covariance

Example of a column of P/ ©C, ©C, with K =128

<vv> Increment 187

it S0 o
0 ' t)o
_ . { 5
OQ T 5 04 . 0.5
y ) %2 10
> 10
15 10
e 0.2
5 20
-06 25 | -0.5
-0.8 30
0 90 120

26



Adaptive vs. Non-adaptive Localization:

Twin Data Experiment

RMS(Sa)th{S(Ef)
I ? :
Non-adaptive localization ﬂ
o :
Adaptive localization O.8F e i SRR S
¢ : :
QB -------------------- ° -------------------- ................... »
L -
0. i . :
4[-J \Y Tv d Ps

Analysis Variable

Normalized RMS analysis error as a function of analysis variable

~200,000 observations of U, V,T assimilated at 6, 12, and 18 Z




Coupled Ensemble Prediction: Conclusions

Developed coupled ensemble prediction capability

within COAMPS framework allowing rapid relocation to new areas

Coupled ensembles provide for probabilistic prediction

demonstrated with relatively coarse resolution tropical cyclone case

Ensemble based DA system presented

adaptive localization of ensemble covariances account for propagation
and scale variations of forecast error distributions

huge modulated ensembles enable 4D-VAR global solve using an
ensemble based TLM

adaptively localized covariances beat operational covariances in NWP
iIdealized twin-data experiments

straightforward to import coupled model ensembles into ensemble
based DA system for truly coupled assimilation (work in progress)
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