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Objectives Coupled Ensemble Prediction

Coupling: The ocean and atmosphere are coupled in nature.  The 
coupling constrains the range of possible states.

Ensembles: To take into account major sources of uncertainty in non-
deterministic dynamics, system forcing, and initial state, in order to 
provide estimates of environment forecast uncertaintyprovide estimates of environment forecast uncertainty

System Components
Atmospheric Model: Coupled Ocean Atmosphere Mesoscale 

Prediction System (COAMPS)
Ocean Model: Navy Coastal Ocean Model (NCOM)
A  D  A i il i N  A h i  V i i l D  Atm Data Assimilation: Navy Atmospheric Variational Data 

Assimilation System (NAVDAS-3DVAR)
Ocn Data Assimilation: Navy Coupled Ocean Data Assimilation

(NCODA 3DVAR)
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(NCODA-3DVAR)
Coupling: Earth System Modeling Framework (ESMF)



Data Flow through NCODA System

Raw Obs

SST:
Navy Coupled Ocean Data 
Assimilation: operational at Automated QC  

3DVAR – simultaneous 
analysis of 5 ocean Ocean Data

QC

NOAA (GAC, LAC), 
METOP (GAC, LAC),                  
GOES, MSG, AATSR, 
AMSR-E, Ship/Buoy
Profile Temp/Salt:
XBT  CTD  A  Fl t  

Innovations

p
Navy centers (NAVO, FNMOC)

Automated QC  
w/condition flags

variables: temperature, 
salinity, geopotential, 
u,v velocity components

QCXBT, CTD, Argo Float, 
Fixed/Drifting Buoy
Altimeter SSH:
Jason-1,2; ENVISAT 
Sea Ice:
SSM/I  SSMIS Increments3DVARSSM/I, SSMIS
Ocean Gliders:
T/S profiles
Velocity:
HF Radar, ADCP, Argo 
T j t i  S f  

Increments

Ocean Model
Trajectories, Surface 
Drifters, Gliders

Forecast Fields 
Prediction Errors First Guess

Adaptive Sampling 
Guidance
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Sensors NCODA: QC + 3DVAR HYCOM or NCOM



Coupled Ensemble Prediction
Development of the TwoDevelopment of the Two--Way Coupled Ensemble SystemWay Coupled Ensemble SystemDevelopment of the TwoDevelopment of the Two--Way Coupled Ensemble SystemWay Coupled Ensemble System
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Coupled Ensemble Prediction
The Ensemble Transform (ET)  Ensemble GenerationThe Ensemble Transform (ET)  Ensemble Generation

(Bishop and Toth 1999, Bishop et al., 2009)(Bishop and Toth 1999, Bishop et al., 2009)

X = X Tf

transformation 
matrix

analysis 
perturbations

forecast 
perturbations= x constrained by

X P X = n IT -1

analysis error 
variances (P )a

X   =   X              Ta f X     P    X   =  n Ia a a
a1(1) a2(1) am(1)…
a1(2) a2(2) am(2)…

a (3) a (3) a (3)X =

f1(1) f2(1) fm(1)…
f1(2) f2(2) fm(2)…

f (3) f (3) f (3)X =

σ1
2 0 0…

0 σ2
2 0…

0 0 0P =a1(3) a2(3) am(3)…

a1(n) a2(n) am(n)…

...
...

...…
X  = a f1(3) f2(3) fm(3)…

f1(n) f2(n) fm(n)…

...
...

...…
X  = f 0 0 0…

0 0 σn
2…

...
...

...…
P  = a

n= number of parameters m=number of ensemble members

• With a large ensemble, only one Transformation matrix (T) that includes both 
atmospheric and oceanic variables could be used

n= number of parameters   m=number of ensemble members

Atmosphere variables are u, v, T, q and ocean variables are u, v, T, S

atmospheric and oceanic variables could be used. 
• With a smaller ensemble (<100), two distinct T’s that include all state variables 
(one for atmosphere and one for ocean) is used.

• Accurate knowledge of analysis error variances (Pa) in both fluids is critical.
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Accurate knowledge of analysis error variances (Pa) in both fluids is critical.
• T derived from the atmospheric estimate of Pa is incapable of directly controlling 
the magnitude of oceanic perturbations (and vice versa).



NAVDAS l i i

NAVDAS Analysis Error 

NAVDAS analysis error variance 
estimates of temperature for 
different update cycles

Estimates show considerable 
spatial variability.

Estimates show temporal 
variability owing to cycle-to-cycle 
changes in the observing g g
systems.
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2008090112 2008090 00

NCODA Background Error Variances (Pf)

Hanna: 2008090112-2008090700

1-m depth20-m depth40-m depth85-m depth130-m depth
200-m depth

Adaptive, evolve with time             
Two Components:

1 M d l i bilit ti hi t f f t1 m depthp 1. Model variability – time history of forecast 
differences at update cycle interval.
2. Model data errors – time history of 
analyzed increment fields.y

Time scales used to form these 10-day time-
mean estimates computed from ratio of 
spatially varying correlation length scalesspatially varying correlation length scales 
and velocity fields

- model variability dominates error variances 

Velocity Errors (cm/s)

in high-flow regimes
- model data error dominates error variances 
in low-flow regimes

7

f
T

f
T

ffa HPRHHPHPPP 1][ −+−=



Coupled Ensemble Prediction
Atmosphere/Ocean ET

Two-Way Coupled 

Example of analysis perturbations:

1
y p

COAMPS forecast
Ocean nest 1:

27 km

v-current (m s-1)

Atmospheric ET u,v,T,q
Ocean ET: T,S,u,v

Initial 
ensemble
conditions

5
v-wind (m s-1)

Atmosphere/Ocean
analysis error 

variance

Atmosphere/Ocean
analysis 

perturbations

Analysis

0

Interpolated 
moving nest 

region for 
atmospheric ET

COAMPS atmospheric/ 
ocean data assimilation -5

Hanna (2008090112-2008090700)

p
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Hanna (2008090112-2008090700)

Coupled Ensemble system features:  separate atmospheric and oceanic ETs; 
atmospheric moving nest ET capability



Coupled Ensemble Prediction: 
Coupled Experimentsp p

• Moving nest tropical cyclone cases
• Using NOGAPS T119 banded ET as 
cold start and lateral boundary conditionscold start and lateral boundary conditions

• September 2008
• Hanna (08L: 1-7 September)
• Ike (09L: 5-12 September)

Hanna Ike

Ike (09L: 5 12 September)

• September-October 2009
• Rick (20E:  15-21 October)

Ch i (15W 12 20 S t b )
Rick

Lupit

• Choi-wan (15W:  12-20 September)
• Lupit (22W:  14-25 October) 

• ABCANZ case study

Choi-wan

Bay of 
Plentyy

• America, Britain, Canada, Australia, New Zealand experiment 
• 23 Feb – 5 Mar 2009 field program at Bay of Plenty, NZ
• Focus on EM/radar propagation
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• Piracy case study
• Central America
• Focus on Risk Management tools/applications

COAMPS 27-km 
operational Cent-Am



Coupled Ensemble Prediction
IKE:  Cold Start at 2008090500; 29 members
At h 81 27 k O 27 k

• 27-km moving 
nest 2 

12 h data

Atmosphere:  81-, 27-km Ocean: 27-km

BEST TRACK
TC tracks

Coupled
(56-h fcsts)

• 12-h data 
assimilation cycle

Nest 1: 81-kmMoving atmospheric nest 2: 27-km Nest 1: 81-kmMoving atmospheric nest 2: 27-km

t = 54-ht = 54-h

t = 0-h

t  54 h

t = 0-h

t  54 h

Uncoupled
(60-h fcsts)

Ocean nest 1: 27-kmOcean nest 1: 27-km
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• Lateral BC:
NOGAPS T119

ensemble



Coupled Ensemble Prediction
IKE:  Cold Start at 2008090500; 29 members
At h 81 27 k O 27 k

Nest 2:  TC forecast track from 2008091100
Nest 1: 81-kmMoving atmospheric nest 2: 27-km Nest 1: 81-kmMoving atmospheric nest 2: 27-km

Atmosphere:  81-, 27-km Ocean: 27-km

t = 0-h

t = 54-h

t = 0-h

t = 54-h

Ocean nest 1: 27-kmOcean nest 1: 27-km

50
S d

Track error (km)

0

Spread

Coupled
Uncoupled

100

150 Coupled
Mean

CoupledUncoupled
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0

50
Solid=mean

Dashed=control

BEST TRACK



Air-Ocean Variability (Ike: 2008090500-2008091300)
Coupled Ensemble Prediction

TMI (AMSR-E)

Ensemble spread
24-h forecast valid 2008091112

Ensemble mean

Sea Surface Temperature Difference (oC)
2008091300 - 2008090500

ensemble mean Surface wind stress (N m-2)Surface current (m s-1)

Q lit ti l SST E bl t k

C
)2 4

Qualitatively, SST 
differences are similar.

Ensemble mean track 
computed from 0-11 h avg 

forecast position

Th l d t ll f i ti ti

n 
sq

ua
re

d 
er

ro
r (

o C

2

3
Spread-skill

48-h forecasts of ocean 
temperature (all depths) 

00 UTC 5 Sept to 12

• The coupled system allows for investigation 
of coupled air-sea interaction processes.

• The coupled system for coarse resolution 
ocean (27-km) test cases of Hanna and Ike

12Binned mean ensemble variance (oC)2

Bi
nn

ed
 m

ea
n

1

0 1 2 3 4
0

00 UTC 5 Sept to 12 
UTC 11 Sept 2008

100 bins

ocean (27-km) test cases of Hanna and Ike 
is very under-dispersive.

• Moving to higher resolution model grids.



1st guess/prior 
Coupled model forecast

for atmosphere 

Current DA approach for coupled modelCurrent DA approach for coupled model

2x
1 . 5( )M x

coupled forecast
for atmosphere

1 .5x

truth
atmospheric

3DVAR atmospheric 
state estimate. Only 

atmosphereobservations uses atmospheric data.

1st guess/prior 
coupled forecast

atmosphere

ocean

2x
1 . 5( )M x1 .5x

p
for ocean

Coupled model forecast

truth
ocean 

observations

3DVAR ocean 
state estimate.

Only uses ocean

Coupled model forecast
for ocean 
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t0 t1 t2 t3
Data assimilation window

data.



Coupled DA approach, atmosphere and ocean are
treated as a single coherent system

atmospheric+oceanic 
observations

truth

1x

2x

1( )M x1st guess

0x

0( )M x
1( )1st guess

Weak constraint ensemble 4DVAR state estimate

3x

t0 t1 t2 t3

0
fx0

x
2( )M x

Weak constraint ensemble 4DVAR state estimate

Ocean observations correct atmospheric states and atmospheric

0

Data assimilation window
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Ocean observations correct atmospheric states and atmospheric 
observations correct ocean states..



Coupled DA Application: Tropical Cyclone

SST (°C) (color) and wind stress (contours)
Definition Coupled DA:
- observation in one fluid 

t i ti icreates an innovation in 
the other fluid

45 km

15 km

5 km

• COAMPS (45, 15, 5 km moving)
• NCOM (5, 1.67 km)
• Initialized 12Z Aug. 27, 2005
• 48 h Forecast
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TC wind stress causes upwelling, upwelling cools ocean surface, cool 
ocean surface moderates TC intensity.



Coupled DA ChallengesCoupled DA Challengesp gp g

Coupled model ensemble provides plausible forecast states 
d b l d dconstrained by coupled dynamics

Coupled DA via classical adjoint/TLM approach costly to develop 
and maintain 

Ensemble covariances from coupled model ensemble enable 
coupled DA

• issue of spurious sample covariances associated with small 
ensemble size 

Challenges:g

• find the most effective method of attenuating spurious 
correlations
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• implement adaptive covariance localization functions to 
enable 4D ensemble based DA



Decoupled DA versus Coupled DA

Decoupled 3DVAR SystemsDecoupled 3DVAR Systems

1. Separate analyses for ocean and 
atmosphere

Coupled 4D SystemCoupled 4D System

1. Single analysis: bottom of the 
fatmosphere

2. Atmospheric data do not improve 
ocean.   Ocean data do not 
improve atmosphere

ocean to top of the atmosphere

2. Atmospheric data improve ocean 
- ocean data improve improve atmosphere.

3. Difficult to produce balanced 
coupled model initial states.

atmosphere. 

3. Enables the production of highly 
balanced coupled initial states.

4. Does not use ensemble 
covariances in either fluid.

p

4. Uses ensemble covariances in 
and between fluids.

5. No 4D covariance so use of data 
separated in time fundamentally 
incorrect.

5. Flow adaptive ensemble 
localization gives 4D 
covariances.  Handles data 
correctly across assimilation 
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y
time window. 



Adaptive Ensemble Covariance LocalizationAdaptive Ensemble Covariance Localization
bl fl l iStable flow error correlations

Unstable flow error correlations

18Ensembles give flow dependent, but noisy correlations



Adaptive Ensemble Covariance LocalizationAdaptive Ensemble Covariance Localization

Stable flow error correlations

Fixed localization

Current ensemble DA techniques
d i b lti l i bl

Fixed localization

reduce noise by multiplying ensemble
correlation functions by a fixed
localization function (green line).

Resulting correlations (blue line) are too
thin when true correlation is broad and
too noisy when true correlation is
thin

Unstable flow error correlations

Fixed localization

thin.

19Today’s fixed localization functions limit adaptivity



Adaptive Ensemble Covariance LocalizationAdaptive Ensemble Covariance Localization
Stable flow error correlations

t = 0 t = 1

Modulation functions based on 
smoothed ensemble correlations 

id l d ti d t = 0 t = 1provide scale adaptive and 
propagating localization 
functions. 

bl fl l i

These moving localization 
functions enable ensemble  
based 4D DA.

Unstable flow error correlations

t = 0 t = 1Localization adapts to width and 
propagation of true errorpropagation of true error 

correlations
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Bishop and Hodyss (2007)



Modulated Ensembles and LocalizationModulated Ensembles and Localization

Bishop and Hodyss (2009a, 2009b) Tellus
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Modulated ensembles enable global 4DVARModulated ensembles enable global 4DVAR

Given :                                     where ZD is the large, modulated ensembleT
DDf ZZP =

Step 1 is to solve for ν :

)]([}]][{[ 2/12/12/1 T HRIHZRHZR −−− )]([}]][{[ 2/12/12/1
f

T
DD xHyRvIHZRHZR −=+

Step 2 is the post-multiply :

vHZRZxx T
DDfa ][ 2/1−=−

• Incremental and non-incremental 4DVAR are possible
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• Hybrid mixes of ensemble-based TLMs and static covariances are possible



Application to global NWP model

06Z
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Application to global NWP model

18Z
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Ensemble based localization moves ~500 km in 6 hrs



4D Localized Ensemble Covariance

Example of a column of   with 128 f
K s s K =P C C

<vv> Increment 06Z
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4D Localized Ensemble Covariance

<vv> Increment 18Z
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Statistical TLM implied by mobile adaptively localized covariance 
propagates single observation increment 1000 km in 12 hrs. 



Adaptive vs. Non-adaptive Localization:             
Twin Data Experiment

Non-adaptive localization

Ad ti l li tiAdaptive localization

Lower is Better

Analysis Variable
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Normalized RMS analysis error as a function of analysis variable

~200,000 observations of U, V,T assimilated at 6, 12, and 18 Z



Coupled Ensemble Prediction: Conclusions

• Developed coupled ensemble prediction capability
– within COAMPS framework allowing rapid relocation to new areaswithin COAMPS framework allowing rapid relocation to new areas

• Coupled ensembles provide for probabilistic prediction
– demonstrated with relatively coarse resolution tropical cyclone case

• Ensemble based DA system presented
– adaptive localization of ensemble covariances account for propagation 

and scale variations of forecast error distributionsand scale variations of forecast error distributions

– huge modulated ensembles enable 4D-VAR global solve using an 
ensemble based TLM

– adaptively localized covariances beat operational covariances in NWP 
idealized twin-data experiments

– straightforward to import coupled model ensembles into ensemble 
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based DA system for truly coupled assimilation (work in progress)
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