Uncertainty Prediction and Reduction
In Ocean Fields:
Adaptive Dynamically Orthogonal Equations

Pierre F.J. Lermusiaux
T. Sapsis, M. Ueckermann, T. Sondergaard, P. Haley and K. Yilgit

Mechanical Engineering, MIT

Multidisciplinary Simulation, Estimation and Assimilation Systems (MSEAS)
http://mseas.mit.edu/

¢ Introduction

+ Two Grand Challenges in Ocean/Earth-System Sciences & Engineering
* Prognostic Equations for Stochastic Fields of Large-Dimension
= Intelligent Adaptive Sampling: the Science of Autonomy

= Non-Gaussian Data Assimilation with DO egns and EM-algorithm

+» Conclusions
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Flow Skeletons and Uncertainties:
Mean LCS overlaid on DLE error std
estimate for 3 dynamical events

« Two upwellings and one relaxation (about 1
week apart each)

« Uncertainty estimates allow to identify most
robust LCS (more intense DLE ridges are
usually relatively more certain)

» Different oceanic regimes have different LCS
uncertainty fields and properties

[Lermusiaux and Lekien,
2005. and In Prep, 2010

Lermusiaux, JCP-2006

Lermusiaux, Ocean.-2006]
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"4 A Grand challenge in Large Nonlinear Systems

R
i ,}
3”\! F -
PARE=- L % L)
¥, —_— A,
eI ]

N

NEE =L
P =

N S
S or u_:_,}i-

R ———

Quantitatively estimate the accuracy of predictions

Computational challenges for the deterministic (ocean) problem
e Large dimensionality of the problem, un-stationary statistics

» Wide range of temporal and spatial scales (turbulent to climate)
 Multiple instabilities internal to the system

* Very limited observations

Need for stochastic modeling ...

* Approximations in deterministic models including parametric uncertainties
* Initial and Boundary conditions uncertainties

 Measurement models

Need for data assimilation ...

 Evolve the nonlinear, i.e. non-Gaussian, correlation structures

* Nonlinear Bayesian Estimation
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v Overview of Uncertainty Predictions Schemes

u(xto)l u(x,t)+gvi (to)u (x.t)

) Uncertainty propagation via POD method
%‘ 2 | ‘ According to Lumley (Stochastic tools in Turbulence, 1971) it was introduced
S q‘__;‘ _ %} independently by numerous people at different times, including Kosambi (1943),
O, % L Loeve (1945), Karhunen (1946), Pougachev (1953), Obukhov (1954 ).
o]
o -
Uncertainty propagation via generalized 8 %
Polynomial-Chaos Method A : ¢
Xiu & Karniadakis, J. Comp. Physics, 2002 'ﬁ £ %
Knio & Le Maitre, Fluid Dyn. Research, 2006 é S
Meecham & Siegel, Phys. Fluids, 1964 i §
= -
2 = =i Uncertainty propagation via Monte Carlo method
S5 . patl ) fi = restricted to an “evolving uncertainty subspace”
2 ¢ PRSI (Error Subspace Statistical Estimation - ESSE)
-g § N | ' | ig Lermusiaux & Robinson, MWR-1999, Deep Sea Research-2001
ilé) g Fo 3 Lermusiaux, J. Comp. Phys., 2006
=0

B. Ganapathysubramanian & N. Zabaras, J. Comp. Phys., (under review)



Problem Setup

Statement of the problem: A Stochastic PDE

L [EI a)] Nonlinear differential operator (possibly with stochastic coefficients)
Uy (X; a)) Stochastic initial conditions (given full probabilistic information)
h[éD; 0] Stochastic boundary conditions (given full probabilistic information)

Goal: Evolve the full probabilistic information describing u(x,t;o)

An important representation property for the solution: Compactness

S - . . .
CoN : Advantage: Finite Dimension Evolving Subspace
. ( X a)) . ( X t) " ;Y‘ (t’ a)) Y (X t) Disadvantage: Redundancy of representation



Evolving the full representation

Major Challenge : Redundancy
u(x,t;o)=0(x,t)+> Y (tw)u (xt)
i=1

First Step (easy): Separate deterministic from stochastic/error subspace

Commonly used approach: Assume that Y; (t;®)=0

Second step (tricky): Evolving the finite dimensional subspace 75

A separation of roles: What can W tell us ?
t
. | |
Only how the stochasticity evolves|inside | 7, e o
; ou. ( X,t
A separation of roles: What can M tell us ? L liCEle

ot | |

How the stochasticity evolves both|inside jand normal to 75

Natural constraint to overcome redundancy
Restrict “evolution of 4,” to be “normal to 47" i.e.

j—auiétx’t)uj(X,t)dx=O forall i=1,..,s and j=1..,5s



Dynamically Orthogonal Evolution Equations

Theorem 1: For a stochastic field described by the evolution equation

assuming a response of the form u(x,t;@)= U(X’t)+ZYi (to)u, (x1)
we obtain the following evolution equations N

Family of PDEs
describing evolution of

stochastic subspace Vs

Llu(y.to)] dy} Cov U (x1)

Sapsis and Lermusiaux, Physica D (2009)



Choosing a priori the stochastic subspace Vs using POD methodology we recover
POD equations.

Choosing a priori the statistical characteristics of the stochastic coefficients Y, (t; a))
we recover the PC equations.



Application | : Navier-Stokes in a cavity

2D viscous flow with stochastic initial conditions and no stochastic excitation

u=U,v=0

ou oP_ 1, _a(uz)_a(uv) e
ot ax " Re OX oy
v P 1 o(w) 8V

= A— — — —
Yoy Re  ox y V=0 i
(89_u+@20
e u=0,v=0

Initial mean flow

Mean ywix.t )

A

St_reamfunctibn

Initial Covariance function

2 2
C(r)= [1+br+—] e r=|x-y|

JC (b=l & (x)dx = 276,
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Uy; (X) =0, (x) ‘
Y (ti0) 0 ¥ (0,4) @. ¢ ‘e

PDE Numerics: C-grid, upwind [M. Griebel et al., 1998] SDE Numerics: here, s-dimensional Monte-Carlo



Application | : Navier-Stokes in a cavity

Time = 0.02
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Comparison with Monte-Carlo

Tirme=0.04

DO kean (= t) MC kean 1= t)
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Comp. time: 11min (4000 samples or 12,3h (300 samples)

analytical Y; )
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Example of Convergence Study

Mean
Subspace

Mode 1
Size:

Mode 2 Mode 3 Mode 4

o
dim(¥ J=5

dim(V }=6

dim(¥ }=7




Adapt the stochastic subspace dimension

al .
AVS Probability measure

Oy > A L u; ()

* In the context of DO equations so far the size of the stochastic subspace V,
remained invariant.

* For intermittent or transient phenomena the dimension of the stochastic
subspace may vary significantly with time. This is accounted for by ESSE.

We need criteria to evolve the dimensionality of the stochastic subspace

This is a particularly important issue for stochastic systems with
deterministic initial conditions



Criteria for dimension reduction / increase

Dimension Reduction

Comparison of the minimum eigenvalue of the correlation matrix C,, .
i

Removal of the corresponding direction from the stochastic subspace.

Dimension Increase
Comparison of the minimum eigenvalue of the correlation matrix CYiYJ_.

Addition of a new direction u; (x,t) in the stochastic subspace V..

How do we choose this new direction ?

Same problem when we start with deterministic initial condition
(dimension of stochastic subspace is zero)



Analytical criteria for selection of new directions

Theorem 2: For a stochastic field described by the evolution equation

and with current state at t=t, described by

the maximum variance growth rate of a stochastic perturbation in VSl will be
given by Frechet Derivative

where 4 (y,t), i=1..,m is a finite basis that approximates Vsi.

The corresponding direction of maximum growth is given by

where Vv, 1=1..,m s the eigenvector associated with 0 .



Example Double Gyre, Re=10,000
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Optimally sense the (ocean) system
with large numbers
of heterogeneous and autonomous vehicles
that are smart

Smart Sensing Vehicle Swarms
» Knowledgeable about the predicted (ocean) system and its uncertainties

e Knowledgeable about the predicted effects of their sensing on future estimates

Our collaborative experience ...
» Adaptive sampling via ESSE with non-linear predictions of error reductions

Mixed Integer Linear Programming (MILP) for path planning

Nonlinear path planning using Genetic algorithms

Dynamic programming and onboard routing for path planning

Command and control of vehicles over the Web, directly from model instructions

17



Adaptive Sampling Methodologies for Smart Robotic Swarms
Lermusiaux et al

4 candidate iracks,
overlaid on surface T fet far Aug 26 Beest predicied relative error reductions irack |
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" TL@E i\ 1Z0 16 1A HE <1E w:.a.m:. ) " ' 12?2 L R R Yilmaz et a|, OE-20081 Lermusiaux1 et al 2007
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Level Set Representation for
Optimal Path Planning for Swarms in (strong) Currents

Advance many vehicles Represent vehicles “front’
in many directions W|th 3 level set

OR
* Can lead to poorly defined curves e Continuous representation
* Only have to solve for 1D curve e Need so solve 2D field
* What to do with multiple vehicles? * Easily deals with multiple vehicles
* Exponential increase in cost * Front propagates normal to itself

Time 1

Time 2

19



Level Set Path Planning in currents : Uncertainty - DA
1) Utilize Uncertainty on Level Sets  and/or 2) Uncertain level sets
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Combine Partially Observable MDPs (POMDPs)
with DO/ESSE equations for Adaptive Sampling

Key Idea: Steer UAVs using hierarchical “Partially Observable Markov Decision Processes”
Examples of global goals may be:
*  Track region / ocean feature
*  Mimic swarming scheme
* Investigate region of large predicted uncertainties
*  Combinations of the above

Goal: Maximize utility (Bellman Optimality Equation): Uw(b)=;/max(r(b,a)+jUw(b')p(b'|b,a)db')

Initial Simple Test Case: Game of Life.
*  One AUV (black circle). C e

*  One global goal (green circle). R ER IR

. Many local goals: ’

. “Good” cells (blue dots). ot .

. “Bad” cells (red x’s). piRaE G

. Multiple uncertainties: -5

. observations and actions.

M. Gardner, The fantastic combinations of John Conway’s new solitaire game “life”, Scientific
American 223 (October 1970): 120-123.




.16} DO equations and ESSE data assimilation

Data Assimilation (by Kalman update, combining DO uncertainty predictions with ESSE):
* Generate realizations:
N
u (x,t,)

fu ()} =u(xt,)+{¥ (o)},

*  Calculate Kalman Gain:
K=BH'(R+ HBHT)_l

*  Perform Kalman update:

fur (et)), = {ur (xt)) +K(v(xt,) - Ha(xt,))

*  Project back into D.O. framework:
N
u (x.t,) = ¢ (x.t,); Y, =<{u;r (x,to)}1 U, (x,t0)>

Inter-vehicle communication/potential:
* Add penalty term to POMDP reward function:

Penalty = k\/|Ax - x0| + 10/ |AX]

...........




True Solution
0.0, Solution H
®  Adaptive Observations

< Fixed Observations

Lorenz-95 Equation (with added diffusion):

g dissipation

u. ~-

d_tl — E‘Ii—l (ui+1 —U._, ) +K (ui+1 — 2ui + ui—l) —U; + i
advection diffusion forcing

“40 ODEs: represent an atmospheric quantity at 40 sites spaced equally about a latitude circle..”
Where to make supplementary observations?

E.N. Lorenz & K.A. Emanuel, Journal of the Atmospheric Sciences, 1998, Vol: 55, Iss: 3.
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True Solution

0.0, Solution

®  Adaptive Observations
< Fixed Observations

True Sakdtion
0.0, Sohdion

Adupiive Obsendations
Fixed Obserrahons

® Adaplive ations

O Fixed Obseraations L




Lorenz-95

True Solution
15— 0.0, Solution H
®  Adaptive Observations
10k < Fixed Observations
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Lorenz-95

True Solution
15— 0.0, Solution H
®  Adaptive Observations
10k < Fixed Observations
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Example: Lorenz-95

- Adaptive Observations (overlaid on Fixed observations)-

Time pasged: 0.05. Time until next observation: 0.2

= True Saolution
15— D.0. Solution H
®  Adaptive Observations
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/> 'Non-Gaussian Data Assimilation: Sudden Expansion in a Pipe

e Fit Gaussian
mixtures to
coefficients Y;

e EM-algorithm
to obtain
maximum
likelihood fit

e Bayesian
Information
Criterion to
select number
of Gaussians

Truth (t =60)

LR N b= %
N ,‘__""""
aN————

AN e

Root Mean Square Error

0 50 100
Time(s)
Variance
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CONCLUSIONS - DO equations

“* New Prognostic Equations for Stochastic Fields
» Derived new closed DO field equations (applied to several 2D NS/cases)
= Adapted the size of the subspace (as in ESSE)

= Multiscale information/energy flows between mean and stochastic-modes
* DO Data Assimilation (Bayesian + Information Theory)

*» Intelligent Adaptive Sampling: the Science of Autonomy
» Developed and utilized varied Adaptive Sampling schemes
= Path Planning for Sensing Swarms using Level Set Methods

* Merging adaptive DO equations, ESSE-Data-Assimilation and
POMDPs for Smart Adaptive Sampling in 1D



CONCLUSIONS - DO equations

* Ongoing Research:
» |dealized Climate — MOC uncertainty
= DO and non-Gaussian DA with more realistic ocean fields

= Continue combination of “ESSE+DO + Level Set + Information theory” for
collaborative Sampling Swarms

»= Evolve the subspace based on data (learning as in ESSE)

Pressure time= 0 Rho (Mx=227, Ny=227)

4 5

* “DO Numerics” manuscripts

0.8

0.8

« Direct cost of DO eqns: 08 08
O(SZ) X (COSt of Determ. PDE) 0:2 * 0:2
» With projection methods, cost reduces to: Rl e T "

V velocity U velocity

O(s) x (Cost of Determ. PDE)

0.8 0.8
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Impose all modes to be incompressible and solve for ¢°°

E
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pseudo-pressures that contain all cross-pressure terms **
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Note: looking into non-intrusive methods too
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