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Super-ensembles (SE)
MONITORING                                       PREDICTION

moored     towed      remote                              models              

Data
assimilation

Which model is best? 

SE = model-data fusion =
improved prediction by
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improved prediction by 
optimal combinations of predictions and data



Super-Ensembles (SE)…
Models DataWeights• Simple ensemble-mean

• Individually bias-corrected ens.-mean
• Linear regression (least-squares)+biasLinear regression (least squares) bias
• EOF regularization
• Non-linear regression (least-squares)

• Neural networks
• Genetic algorithms

• Dynamic regression
• Kalman Filter
• Particle filter

• Hyper-ensembles: combination of 
ocean/wave/atmosphere (e.g. surface 
drift)
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Errors on SVP 24h forecast:
MREA04

Analysis
(truth)

Errors (single models)
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HARV NCOM 2 HOPS 2 NCOM 4 models
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DART06: Forecast error at 24 hrs
el

s M
M

od
e

M
ode

M ls
S

E
S

E

NATO UNCLASSIFIED6



Forecast error statistics (24 hrs)

Models SEModels SE

Models SEModels SE
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Optimal allocation of assets

Prediction error Uncertainty
Ensemble spreadBest num. models

SE (-75%)SE (-60%)
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DART06: wave SE
f fWave forecasts for 2 August 2006 at 18:00 

UTC in the Adriatic Sea.
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MREA04: Drifter tracks

True drifter

Ocean advection PRESENT

48 h forecast

R le of th mb H per ensembles
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Rule of thumb
(3%wind+
15 deg right)

Hyper-ensembles



DART06: Probability distribution maps

Rule of thumb

Truth

Ocean advection PRESENT

SE
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Persistence
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BP07 
temp forecast error: 
20070430+24 hrs



Impact on acoustics : RAM 

20070430 – T=21h
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Correlation of predicted complex LF 
acoustical pressure fields



Conclusions: super-ensemble

• Improved predictions
• Reduced uncertainties

Obj ti t t d f i f d l• Objective+automated fusion of model
• Reconciles contradicting forecasts
• Many (inter disciplinary) applications• Many (inter-disciplinary) applications

• See also presentation by B MourreSee also presentation by B. Mourre
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Perspectives

• Multivariate & coupled ocean-wave-
atmosphere covariances

• Dynamical constraints• Dynamical constraints
• Analytical models
• Multi-scale/processes level SEMulti scale/processes level SE
• Non-Gaussian/Particle Filter SE
• Re-initialization of numerical models
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DART06 (Dynamics of the Adriatic in Real-Time)
SEPTR data in NRT on the web
High bandwidth Ship-NURC satellite link g p

NURCNURC
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NURCNURC

GEOS II 
Mirror

GEOS II

Time based scheduled 
synchronizations



BP07
Multiple NCOM nests NCODA DA

Courtesy G. Peggion

ETKF, GA - OSSECTD (3 ships) MVP (SNELLIUS)

Courtesy G. Peggion

,

Courtesy E. CoelhoB
A
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Uncertainties prediction
U t i t (99 7% f )Uncertainty (99.7% conf.)

Posterior verification
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DART06: Kalman and Particle Filter SE
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Which forecast (24 hrs) is best?
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Can we do better?

What if we have multiple predictions?

• Select the best prediction?
• Fuse all predictions: 

multi-model super-ensemblesmulti-model super-ensembles

• Some existing applications in climate/meteorology

C f• NURC: pioneered work for the ocean
- poor skills of models
- lack of real-time data
- few operational modelsfew operational models

• General aim: improved
– forecast 

t i t / fid ti ti (PDF)
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– uncertainty/confidence estimation (PDF)



SE ‘tricks’

Models DataWeights I d d t tModels DataWeights Independent term

add a bias column

im
e

Regularize (PCA/EOF)

e.g. 95% of variance

h l li ti

Complex weights

ti helps generalization

Magn: stretch

Phase: rotate
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SE Sound speed profile errors
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SE Weights
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MREA04: sound velocity (100m)
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ADRIA02-03 drifters (Jan-Feb)
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Drifter tracks

Ocean advectionOcean advection

O +St kOcean+Stokes

24 h f t

PRESENT

SE

True

Stokes

Unbiased 
i l d l

24 h forecast

single models
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Surface drift

Surface drift (air-sea interface) = response to:
• wind forcing
• Stokes drift (waves)
• Ocean advection (+ inertial oscillation, tides, sub-mesoscale, etc)

Not well understood:Not well understood: 
– wave-current interaction
– energy dissipation
– very young/very high seas

( & )– spectrum (besides Hs & Ts)
– directional spread

Heuristic approachHeuristic approach

Hyper-ensemble (in complex domain) =
combination of wind, current, Stokes
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Hyper-ensembles (HE)
Hyper-ens.Ocean Meteo

HOPS ALADIN FR Linear HEHOPS ALADIN FR Linear HE

NCOM COAMPS Non-linear HE
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SE+Analytical model

PRESENT
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Hyper-ensemble statistics

SESESESE

SESESESE
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Julian day



INDIV SEs
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MREA04: DRIFTERS
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Kalman Filter 
(Gaussian error statistics)

The KF in the super-ensembles paradigm

Forecast :

PR
E

SE
N

T

x contains the weights of the models in the 
combination
M is the identity matrix
Q contains a reasonable error cov. of model weights

Analysis : 

As x is the model weights, and 
y, the observation, is the real drifter position,
H contains the (wind, ocean…) model forecasts !
R represents the error covariance matrix of y.

PRESENT
ep ese ts t e e o co a a ce at o y

Memory of the system ?
Depends on Q and relative errors between models 
and observations
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What if not Gaussian & highly non-
linear? Particle filter (with 
sequential importance resampling)sequential importance resampling)

SIR filter

-create hundreds of particles, i.e. 
combinations of the physical models

Access to full PDF= 
uncertainty + higher momentscombinations of the physical models 

- select the ones going in the right 
direction, replace bad ones with new 
ones

uncertainty + higher moments 
(skewness, kurtosis, etc)

PDF on W, DART06B, T, B75
- Continue until no more observations 
are available, then predict with 
ensemble of particles

PRESENT
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Correlation of predicted complex LF 
acoustical pressure fields
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20070430 – T=21h


