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Observations

» Frequency of v = 12.359 MHz and coupled to a wave length of A\, = 12.13 m,
» Radial currents are used for the assimilation
» Azimuthal resolution of 6 degrees

» Currents are averaged over 1 h
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Radial currents on 2010-07-06 21:30 relative to the Palmaria site: left panel shows
WERA measurements and right panel shows ROMS results without assimilation.



Observations
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Radial currents on 2010-07-06 01:30 relative to the San Rossore site: left panel shows
WERA measurements and right panel shows ROMS results without assimilation.



Observation operator

» Radial currents are extracted by:

K :
uE = 7 ey /h u(z) - e, exp(kyz)dz (1)

— 2r
[ kb = N
e, is the unit vector pointing in the direction opposite to the location of
the HF radar site

positive values: current away from the system

essentially represent an average over the upper meters.

» Smoothed in the azimuthal direction by a diffusion operator to filter scales smaller
than 6 degrees



Model errors covariance

» Estimated by ensemble simulation where uncertain aspect of the model are per-
turbed

» Perturbed zonal and meridional wind forcing
» Perturbed boundary conditions (elevation, velocity, temperature and salinity)

» Perturbed momentum equation ()

d 1 1
Mioau = ——Vwp+—V-F'+V, A ce. (2)
dt Po Po
(3)
e where V;, = ex% + eya%

e does not create horizontal convergence or divergence (linked to barotropic
waves)

e can create mesoscale flow structures (absent or misplaced)



Ensemble spin-up

surface velocity spread
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» Ensemble of IC is created by a 7 day ensemble integration starting from the same
IC but with perturbed forcing (ensemble spin-up)

» Spin-up should create mesoscale circulation features



Velocity spread

Surface velocity ensemble spread after 7 days (m/s)
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» Velocity spread after 7 days

» Largest uncertainties near eddies



Spatial correlation
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» Correlation of temperature at a specific point (magenta circle) and other surface
grid points

» Resulting length-scale is about 50 km



Spatial correlation
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» Correlation of zonal velocity at a specific point (magenta circle) and other surface
grid points

» Resulting length-scale is about 10 km

» Adequately observing surface velocity would require measurements with higher
spatial resolution that the resolution of temperature measurements



Temporal correlation

autocorrelation of radial velocity (9 E,43 N )
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Data assimilation scheme

» Time dimension embedded in estimation vector x
» Different definitions of estimation vector are possible:

e x = (model trajectory), i.e. model state at all time instances

e x = (uncertain forcing fields), here IC, BC, wind and stochastic error term
at all time instances

e x = (model trajectory, uncertain forcing fields)

» The optimal x is given by the Kalman analysis (using non-linear observation
operators as in Chen and Snyder (2007)):

x*=x"+AB+R)" (y° - h(x})) (4)

» where the matrices A and B are covariances estimated from the ensemble.
A = cov(x!, h(x) = ((x— () (h(x) = (h(x)))") (5)
B = cov(h(x'), h(x") = ((h(x) = (h(x))) (h(x) = (h()")  (6)

where (-) is the ensemble average.



Smoother scheme

» For a linear model and an infinite large ensemble, equation (4) minimizes,

J(x) = (x = x")TP" (x = x) + (y° = h(x)) "R (y" - h(x)) (7)

or

J() = (x = x)TP" (x = x) + 3 (ve — (h(x)n) R (y5 = (A(X).)) (8)

where n refers to the indexed quantifies at time n. This is the cost function from
which 4D-Var and Kalman Smoother can be derived.

» Approach is closely related to Ensemble Smoother (van Leeuwen, 2001), 4D-
EnKF (Hunt et al., 2007) and AEnKF (Sakov et al., 2010) where model tra-
jectories instead of model states are optimized and to the Green’s method with
stochastic “search directions”
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Twin experiment
Scheme of a twin experiment:

» model is run with initial conditions (IC), boundary conditions (BC), forcing fields
(e.g. here winds fields) that are assume to be the "true” solution.

» pseudo-observations are extracted from this simulation.
» perturbation are applied to IC, BC and forcing fields.

» Based on those perturbed fields and the extracted pseudo-observation we deter-
mine if the "true” solution can be recovered.

’ Variable \ RMS(x/, x) \ RMS(x*, x") ‘

Temperature 0.080 0.067
Salinity 0.0063 0.0057
u-wind 0.61 0.40
v-wind 0.60 0.54

» Assimilation window is here 48 hours.

» RMS for temperature, salinity and currents is a volume average.




Estimation of trajectory versus estimation of forcing fields
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» Both approaches equivalent for linear system (and additive noise)

» Unrealistic “ensemble extrapolation” when too small observation errors are used
— model trajectory and forcing fields are inconsistent



Error statistics for Palmaria Site
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Simulation with atmospheric model (WRF)

WRF 10m
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Model results with different wind forcings

COSMO forcing (Palmaria) COSMO forcing (San Rossore)
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Figure 1: Radial surface current RMS difference



Conclusions

» Embedding the time dimension into the state vector leads to a smoother scheme
(which is very simple to implement)

» Smoother schemes can be used to estimate the optimal model trajectory or
forcing field

» Both approaches are not equivalent for non-linear systems or multiplicative noise
» The challenge is to make consistent analyzes
» derive “optimal” perturbation first — rerun the model with corrected forcing

» The source code of smoother schemes which runs on Matlab and GNU Octave is
available at http://modb.oce.ulg.ac.be/alex or by email (a.barth@ulg.ac.be).

» Future: what can we learn about the model error from the correction terms?


http://modb.oce.ulg.ac.be/alex
mailto:a.barth@ulg.ac.be
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