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Observations

Data Assimilation:
Combination of model 

and observations

Model results

model error 
covariance observation error
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Operator



Model
I ROMS nested in

Mediterranean
Ocean Forecasting
System

I 1/60 degree resolu-
tion and 32 vertical
levels

I Currents: Western
& Eastern Corsican
Current, Northern
Current, inertial os-
cillation

I Two WERA HF
radar systems (Pal-
maria, San Rossore)
by NATO Undersea
Research Centre
(NURC)



Observations

I Frequency of ν = 12.359 MHz and coupled to a wave length of λb = 12.13 m,

I Radial currents are used for the assimilation

I Azimuthal resolution of 6 degrees

I Currents are averaged over 1 h

Radial currents on 2010-07-06 21:30 relative to the Palmaria site: left panel shows
WERA measurements and right panel shows ROMS results without assimilation.



Observations

Radial currents on 2010-07-06 01:30 relative to the San Rossore site: left panel shows
WERA measurements and right panel shows ROMS results without assimilation.



Observation operator

I Radial currents are extracted by:

uHF =
kb

1− exp(−kbh)

∫ 0

−h
u(z) · er exp(kbz)dz (1)

• kb = 2π
λb

• er is the unit vector pointing in the direction opposite to the location of
the HF radar site

• positive values: current away from the system

• essentially represent an average over the upper meters.

I Smoothed in the azimuthal direction by a diffusion operator to filter scales smaller
than 6 degrees



Model errors covariance

I Estimated by ensemble simulation where uncertain aspect of the model are per-
turbed

I Perturbed zonal and meridional wind forcing

I Perturbed boundary conditions (elevation, velocity, temperature and salinity)

I Perturbed momentum equation (ε)

du

dt
+ Ω ∧ u = − 1

ρ0
∇hp+

1

ρ0
∇ · Fu +∇h ∧ ε ez (2)

(3)

• where ∇h = ex
∂
∂x

+ ey
∂
∂y

• does not create horizontal convergence or divergence (linked to barotropic
waves)

• can create mesoscale flow structures (absent or misplaced)



Ensemble spin-up
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I Ensemble of IC is created by a 7 day ensemble integration starting from the same
IC but with perturbed forcing (ensemble spin-up)

I Spin-up should create mesoscale circulation features



Velocity spread

Surface velocity ensemble spread after 7 days (m/s)
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I Velocity spread after 7 days

I Largest uncertainties near eddies



Spatial correlation
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I Correlation of temperature at a specific point (magenta circle) and other surface
grid points

I Resulting length-scale is about 50 km



Spatial correlation
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I Correlation of zonal velocity at a specific point (magenta circle) and other surface
grid points

I Resulting length-scale is about 10 km

I Adequately observing surface velocity would require measurements with higher
spatial resolution that the resolution of temperature measurements



Temporal correlation
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Data assimilation scheme

I Time dimension embedded in estimation vector x

I Different definitions of estimation vector are possible:

• x = (model trajectory), i.e. model state at all time instances

• x = (uncertain forcing fields), here IC, BC, wind and stochastic error term
at all time instances

• x = (model trajectory, uncertain forcing fields)

I The optimal x is given by the Kalman analysis (using non-linear observation
operators as in Chen and Snyder (2007)):

xa = xb + A (B + R)−1 (yo − h(xb)) (4)

I where the matrices A and B are covariances estimated from the ensemble.

A = cov(xb, h(xb)) =
〈
(x− 〈x〉) (h(x)− 〈h(x)〉)T

〉
(5)

B = cov(h(xb), h(xb)) =
〈
(h(x)− 〈h(x)〉) (h(x)− 〈h(x)〉)T

〉
(6)

where 〈·〉 is the ensemble average.



Smoother scheme

I For a linear model and an infinite large ensemble, equation (4) minimizes,

J(x) = (x− xb)TPb−1
(x− xb) + (yo − h(x))TR−1(yo − h(x)) (7)

or

J(x) = (x− xb)TPb−1
(x− xb) +

∑
n

(yon − (h(x)n))
TRn

−1(yon − (h(x)n)) (8)

where n refers to the indexed quantifies at time n. This is the cost function from
which 4D-Var and Kalman Smoother can be derived.

I Approach is closely related to Ensemble Smoother (van Leeuwen, 2001), 4D-
EnKF (Hunt et al., 2007) and AEnKF (Sakov et al., 2010) where model tra-
jectories instead of model states are optimized and to the Green’s method with
stochastic “search directions”



Observations

Analysis
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Twin experiment

Scheme of a twin experiment:

I model is run with initial conditions (IC), boundary conditions (BC), forcing fields
(e.g. here winds fields) that are assume to be the ”true” solution.

I pseudo-observations are extracted from this simulation.

I perturbation are applied to IC, BC and forcing fields.

I Based on those perturbed fields and the extracted pseudo-observation we deter-
mine if the ”true” solution can be recovered.

Variable RMS(xf ,xt) RMS(xa,xt)

Temperature 0.080 0.067
Salinity 0.0063 0.0057
u-wind 0.61 0.40
v-wind 0.60 0.54

I RMS for temperature, salinity and currents is a volume average.

I Assimilation window is here 48 hours.



Estimation of trajectory versus estimation of forcing fields
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Optimizing trajectory

Optimizing forcing

I Both approaches equivalent for linear system (and additive noise)

I Unrealistic “ensemble extrapolation” when too small observation errors are used
→ model trajectory and forcing fields are inconsistent



Error statistics for Palmaria Site

Without assimilation
(positive values: current
away from the magenta
dot)

With assimilation



Simulation with atmospheric model (WRF)

I blue arrows: WRF 10m
wind vectors, red arrows:
in situ wind measurements
from ICOADS (Inter-
national Comprehensive
Ocean-Atmosphere Data
Set).wind_LS2.mp4

I 3 WRF domains at 30, 10,
3.33 km resolution (two-way
nesting). The limit of those
domains are shown in black.

I 30-km grid model nested
(one-way) into the Global
Forecast System

I 28 vertical layers

wind_LS2.mp4


Model results with different wind forcings

I Total RMS dif-
ferences (m/s):

Pal. Ros.
COSMO 0.14 0.11

WRF 0.13 0.14

Figure 1: Radial surface current RMS difference



Conclusions

I Embedding the time dimension into the state vector leads to a smoother scheme
(which is very simple to implement)

I Smoother schemes can be used to estimate the optimal model trajectory or
forcing field

I Both approaches are not equivalent for non-linear systems or multiplicative noise

I The challenge is to make consistent analyzes

I derive “optimal” perturbation first → rerun the model with corrected forcing

I The source code of smoother schemes which runs on Matlab and GNU Octave is
available at http://modb.oce.ulg.ac.be/alex or by email (a.barth@ulg.ac.be).

I Future: what can we learn about the model error from the correction terms?

http://modb.oce.ulg.ac.be/alex
mailto:a.barth@ulg.ac.be
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Barth, A., A. Alvera-Azcárate, J.-M. Beckers, J. Staneva, E. V. Stanev, and
J. Schulz-Stellenfleth, 2011: Correcting surface winds by assimilating High-
Frequency Radar surface currents in the German Bight. Ocean Dynamics, 61, 599–
610, doi:10.1007/s10236-010-0369-0.
URL http://hdl.handle.net/2268/83330

Chen, Y. and C. Snyder, 2007: Assimilating Vortex Position with an Ensemble Kalman
Filter. Monthly Weather Review , 135, 1828–1845.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for
spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230,
112–126.

Sakov, P., G. Evensen, and L. Bertino, 2010: Asynchronous data assimilation with the
EnKF. Tellus, 62A, 24–29.

http://www.ocean-sci.net/6/161/2010/
http://hdl.handle.net/2268/83330


van Leeuwen, P. J., 2001: An Ensemble Smoother with Error Estimates. Monthly
Weather Review , 129, 709–728.


